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PRESSURE FILTRATION IN A CRACKED
AND POROUS STRATUM

A. M. Ametov UDC 532.546

The main assumptions of the theory for nonsteady-state filtration in a cracked and porous material are given in [1].
A general solution is given in the present work for the first and second boundary problems of filtration in cracks.

1. We assume that pressure equals zero in a cracked and porous material occupying a half-space x = 0. From instant
t = O at boundary x = 0 pressure starts to change by the rule p;(t, 0) = £(t). The distribution of pressure in cracks is
determined from solution of the problem in [1]
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pz(o’x) =0, pl(0,0) = f(0).

Here py, p; are the pressures in cracks and blocks; %, 1, A are coefficients introduced in [1} where it was shown that the initial
pressure distribution in cracks should be found from problem (1.3) whose solution is

p,(0.x) = f(0)exp(—x/V7). (1.4)

It is easy to prove; the solution of the first boundary problem (1.1), (1.2), (1.4) is a function
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With 5 - 0 problem (1.1), (1.2), (1.4) is converted into the first boundary problem for the piezoelectric conductivity
equation [2, Eq. (861.21)]
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and its solution is converted into the solution of problem (1.6)
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It is noted that the pressure in blocks is determined from the equation in [1]
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2. We consider the problem of flow towards a drainage gallery. Then conditions (1.2), (1.4), and solution (1.5) are
written in the form

Py(tx) = p(t,x) ~

py(t,0) = po = const, p,(O x) = pexp(—x/vq),
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We calculate the flow of liquid through boundary x = 0. By differentiating expression (2.1) with respect to x with x = 0 we
obtain
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where k; is crack permeability; p is liquid viscosity. By using the Laplace method (see for example [3]) we find asymptotic
expressions for pressure (2.1) with small x and flow (2.2) with t - oo:
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It can be seen from expression (2.3) that with filtration in porous material (y = 0) the pressure will be greater and the flow
will be less than with a cracked and porous material. This is connected with the fact that as a result of exchange of liquid
between blocks and cracks liquid entering a boundary is partly released by blocks adjacent to it. It is found that blocks are ‘run-
offs’ for pressure from cracks and ‘sources’ of liquid for cracks. With t < #/» from relationship (2.2) we obtain
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3. We find pressure distribution with prescribed flow of liquid through a boundary (second boundary problem). For
this we replace boundary €ondition (1.2) as flows:

apl(tvo) - L
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Correspondingly initial condition (1.4) is also changed:

py(0,x) = £=a(0)V7 exp(=x/ 7).
1
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It is easy to prove that the solution of the problem (1.1), (3.1), (3.2) is given by the equation
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1
with q(t) = qg = const from relationship (3.3) we have
2 71~ exp(=wB’/(1 + np%) cos (%) | - /r}
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With t < 9/x it follows from relationship (3.4) that
1
p,(10) ~ —qow/r_] (1 + E;) (3.5
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It can be seen by comparing Eqs. (2.4) and (3.5) that they are similar to each other since the latter may be converted

p,(1.0)k, 1 p(LO)k, 1 »t
q() ﬁ'“ l+%m~ ‘/77"“ < —2'I>’

]

and from them it follows that in order to maintain a constant flow of liquid through the boundary pressure should increase
linearly, but with a fixed pressure in the gallery flow decreases linearly.
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